ANNEX L ## Methodology for Estimating CH₄ and N₂O Emissions from Manure Management This annex presents a discussion of the methodology used to calculate methane and nitrous oxide emissions from manure management systems. More detailed discussions of selected topics may be found in supplemental memoranda in the supporting docket to this inventory. The following steps were used to estimate methane and nitrous oxide emissions from the management of livestock manure. Nitrous oxide emissions associated with pasture, range, or paddock systems and daily spread systems are included in the emissions estimates for Agricultural Soil Management. ## Step 1: Livestock Population Characterization Data Annual animal population data for 1990 through 2000 for all livestock types, except horses and goats, were obtained from the USDA National Agricultural Statistics Service (USDA, 1994a-b, 1995a-b, 1998a-b, 1999a-c, 2000a-g, 2001a-f). The actual population data used in the emissions calculations for cattle and swine were downloaded from the USDA National Agricultural Statistics Service Population Estimates Data Base (http://www.nass.usda.gov:81/ipedb/). Horse population data were obtained from the FAOSTAT database (FAO 2001). Goat population data for 1992 and 1997 were obtained from the Census of Agriculture (USDA 1999d). Information regarding poultry turnover (i.e., slaughter) rate was obtained from state Natural Resource Conservation Service personnel (Lange 2000). A summary of the livestock population characterization data used to calculate methane and nitrous oxide emissions is presented in Table L-1. Dairy Cattle: The total annual dairy cow and heifer state population data for 1990 through 2000 are provided in various USDA National Agricultural Statistics Service reports (USDA 1995a, 1999a, 2000a-b, 2001a-b). The actual total annual dairy cow and heifer state population data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.nass.usda.gov:81/ipedb/) for Cattle and Calves. The specific data used to estimate dairy cattle populations are "Cows That Calved – Milk" and "Heifers 500+ Lbs – Milk Repl." Beef Cattle: The total annual beef cattle population data for each state for 1990 through 2000 are provided in various USDA National Agricultural Statistics Service reports (USDA 1995a, 1999a, 2000a-b, 2001a-b). The actual data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.nass.usda.gov:81/ipedb/), Cattle and Calves. The specific data used to estimate beef cattle populations are: "Cows That Calved—Beef," "Heifers 500+ Lbs—Beef Repl," "Heifers 500+ Lbs—Other," and "Steers 500+ Lbs." Additional information regarding the percent of beef steer and heifers on feedlots was obtained from contacts with the national USDA office (Milton 2000). For all beef cattle groups (cows, heifers, steer, bulls, and calves), the USDA data provide cattle inventories from January and July of each year. Cattle inventory changes over the course of the year, sometimes significantly, as new calves are born and as fattened cattle are slaughtered; therefore, to develop the best estimate for the annual animal population, the average inventory of cattle by state was calculated. USDA provides January inventory data for each state; however, July inventory data is only presented as a total for the United States. In order to estimate average annual populations by state, a "scaling factor" was developed that adjusts the January state-level data to reflect July inventory changes. This factor equals the average of the US January and July data divided by the January data. The scaling factor is derived for each cattle group and is then applied to the January state-level data to arrive at the state-level annual population estimates. *Swine:* The total annual swine population data for each state for 1990 through 2000 are provided in various USDA National Agricultural Statistics Service reports (USDA 1994a, 1998a, 2000c, 2001c). The USDA data provides quarterly data for each swine subcategory: breeding, market under 60 pounds (less than 27 kg), market 60 to 119 pounds (27 to 54 kg), market 120 to 179 pounds (54 to 81 kg), and market 180 pounds and over (greater than 82 kg). The average of the quarterly data was used in the emissions calculations. For states where only December inventory is reported, the December data were used directly. The actual data used in the emissions calculations were downloaded from the U.S. Department of Agriculture National Agricultural Statistics Service Published Estimates Database (http://www.nass.usda.gov:81/ipedb/), Hogs and Pigs. Sheep: The total annual sheep population data for each state for 1990 through 2000 were obtained from USDA National Agricultural Statistics Service (USDA 1994b, 1999c, 2000f, 2001f). Population data for lamb and sheep on feed are not available after 1993. The number of lamb and sheep on feed for 1994 through 2000 were calculated using the average of the percent of lamb and sheep on feed from 1990 through 1993. In addition, all of the sheep and lamb "on feed" are not necessarily on "feedlots"; they may be on pasture/crop residue supplemented by feed. Data for those animals on feed that are on feedlots versus pasture/crop residue were provided only for lamb in 1993. To calculate the populations of sheep and lamb on feedlots for all years, it was assumed that the percentage of sheep and lamb on feed that are on feedlots versus pasture/crop residue is the same as that for lambs in 1993 (Anderson 2000). *Goats:* Annual goat population data by state were available for only 1992 and 1997 (USDA 1999d). The data for 1992 were used for 1990 through 1992 and the data for 1997 were used for 1997 through 2000. Data for 1993 through 1996 were extrapolated using the 1992 and 1997 data. *Poultry:* Annual poultry population data by state for the various animal categories (hens 1 year and older, pullets of laying age, pullets 3 months old and older not of laying age, pullets under 3 months of age, other chickens, broilers, and turkeys) were obtained from USDA National Agricultural Statistics Service (USDA 1995b, 1998b, 1999b, 2000d-e, 2000g, 2001d-e). The annual population data for boilers and turkeys were adjusted for turnover (i.e., slaughter) rate (Lange 2000). *Horses*: The Food and Agriculture Organization (FAO) publishes annual horse population data, which were accessed from the FAOSTAT database at http://apps.fao.org/> (FAO 2001). #### Step 2: Waste Characteristics Data Methane and nitrous oxide emissions calculations are based on the following animal characteristics for each relevant livestock population: - Volatile solids excretion rate (VS) - Maximum methane producing capacity (B_o) for U.S. animal waste - Nitrogen excretion rate (N_{ex}) - Typical animal mass (TAM) - Annual state-specific milk production rate Published sources were reviewed for U.S.-specific livestock waste characterization data that would be consistent with the animal population data discussed in Step 1. Data from the National Engineering Handbook, Agricultural Waste Management Field Handbook (USDA 1996a) were chosen as the primary source of waste characteristics. In some cases, data from the American Society of Agricultural Engineers, Standard D384.1 (ASAE 1999) were used to supplement the USDA data. The volatile solids and nitrogen excretion data for breeding swine are a combination of the types of animals that make up this animal group, namely gestating and farrowing swine and boars. It is assumed that a group of breeding swine is typically broken out as 80 percent gestating sows, 15 percent farrowing swine, and 5 percent boars (Safley 2000). Table L-2 presents a summary of the waste characteristics used in the emissions estimates. The method for calculating volatile solids production from dairy cows is based on the relationship between milk production and volatile solids production. Cows that produce more milk per year also produce more volatile solids in their manure due to their increased feed. Figure 4-1 in the *Agricultural Waste Management Field Handbook* (USDA 1996a) was used to determine the mathematical relationship between volatile solids production and milk production for a 1,400-pound dairy cow. The resulting best fit equation is logarithmic, shown in Figure L-1. Annual milk production data, published by USDA's National Agricultural Statistics Service (USDA 2001g), was accessed for each state and for each year of the inventory. State-specific volatile solids production rates were then calculated for each year of the inventory and used instead of a single national volatile solids excretion rate constant. Table L-3 presents the volatile solids production rates used for 2000. ## Step 3: Waste Management System Usage Data Estimates were made of the distribution of wastes by management system and animal type using the following sources of information: - State contacts to estimate the breakout of dairy cows on pasture, range, or paddock, and the percent of wastes managed by daily spread systems (Deal 2000, Johnson 2000, Miller 2000, Stettler 2000, Sweeten 2000, Wright 2000) - Data collected for EPA's Office of Water, including site visits, to medium and large beef feedlot, dairy, swine, and poultry operations (EPA 2001a) - Contacts with the national USDA office to estimate the percent of beef steer and heifers on feedlots (Milton 2000) - Survey data collected by USDA (USDA 1998d, 2000h) and re-aggregated by farm size and geographic location, used for small operations -
Survey data collected by the United Egg Producers (UEP 1999) and USDA (2000i) and previous EPA estimates (EPA 1992) of waste distribution for layers - Survey data collected by Cornell University on dairy manure management operations in New York (Poe 1999) - Previous EPA estimates of waste distribution for sheep, goat, and horse operations (EPA 1992) Beef Feedlots: Based on EPA site visits and state contacts, beef feedlot manure is almost exclusively managed in drylots. Therefore, 100 percent of the manure excreted at beef feedlots is expected to be deposited in drylots and generate emissions. In addition, a portion of the manure that is deposited in the drylot will run off the drylot during rain events and be captured in a waste storage pond. An estimate of the runoff has been made by EPA's Office of Water for various geographic regions of the United States. These runoff numbers were used to estimate emissions from runoff storage ponds located at beef feedlots (EPA 2001a). Dairy Cows: Based on EPA site visits and state contacts, manure from dairy cows at medium (200 through 700 head) and large (greater than 700 head) operations are managed using either flush systems or scrape/slurry systems. In addition, they may have a solids separator in place prior to their storage component. Estimates of the percent of farms that use each type of system (by geographic region) were developed by EPA's Office of Water, and were used to estimate the percent of wastes managed in lagoons (flush systems), liquid/slurry systems (scrape systems), and solid storage (separated solids). (EPA 2001a). Manure management system data for small (fewer than 200 head) dairies were obtained from USDA (USDA 2000h). These operations are more likely to use liquid/slurry and solid storage management systems than anaerobic lagoon systems. The reported manure management systems were deep pit, liquid/slurry (also includes slurry tank, slurry earth-basin, and aerated lagoon), anaerobic lagoon, and solid storage (also includes manure pack, outside storage, and inside storage). The percent of wastes by system was estimated using the USDA data broken out by geographic region and farm size. Farm-size distribution data reported in the 1992 and 1997 Census of Agriculture (USDA 1999e) were used to determine the percentage of all dairies using the various manure management systems. Due to lack of additional data for other years, it was assumed that the data provided for 1992 were the same as that for 1990 and 1991, and data provided for 1997 were the same as that for 1998, 1999, and 2000. Data for 1993 through 1996 were extrapolated using the 1992 and 1997 data. Data regarding the use of daily spread and pasture, range, or paddock systems for dairy cattle were obtained from personal communications with personnel from several organizations. These organizations include state NRCS offices, state extension services, state universities, USDA National Agricultural Statistics Service (NASS), and other experts (Deal 2000, Johnson 2000, Miller 2000, Stettler 2000, Sweeten 2000, and Wright 2000). Contacts at Cornell University provided survey data on dairy manure management practices in New York (Poe 1999). Census of Agriculture population data for 1992 and 1997 (USDA 1999e) were used in conjunction with the state data obtained from personal communications to determine regional percentages of total dairy cattle and dairy wastes that are managed using these systems. These percentages were applied to the total annual dairy cow and heifer state population data for 1990 through 2000, which were obtained from the USDA National Agricultural Statistics Service (USDA 1995a, 1999a, 2000a-b, 2001a-b). Of the dairies using systems other than daily spread and pasture, range, or paddock systems, some dairies reported using more than one type of manure management system. Therefore, the total percent of systems reported by USDA for a region and farm size is greater than 100 percent. Typically, this means that some of the manure at a dairy is handled in one system (e.g., a lagoon), and some of the manure is handled in another system (e.g., drylot). However, it is unlikely that the same manure is moved from one system to another. Therefore, to avoid double counting emissions, the reported percentages of systems in use were adjusted to equal a total of 100%, using the same distribution of systems. For example, if USDA reported that 65 percent of dairies use deep pits to manage manure and 55 percent of dairies use anaerobic lagoons to manage manure, it was assumed that 54 percent (i.e., 65 percent divided by 120 percent) of the manure is managed with deep pits and 46 percent (i.e., 55 percent divided by 120 percent) of the manure is managed with anaerobic lagoons (ERG 2000). Dairy Heifers: The percent of dairy heifer operations that are pasture, range, or paddock or that operate as daily spread was estimated using the same approach as dairy cows. Similar to beef cattle, dairy heifers are housed on drylots when not pasture based. Based on data from EPA's Office of Water (EPA 2001a), it was assumed that 100% of the manure excreted by dairy heifers is deposited in drylots and generates emissions. Estimates of runoff have been made by EPA's Office of Water for various geographic regions of the US (EPA 2001a). Swine: Based on data collected during site visits for EPA's Office of Water (ERG 2000), manure from swine at large (greater than 2000 head) and medium (200 through 2000 head) operations are primarily managed using deep pit systems, liquid/slurry systems, or anaerobic lagoons. Manure management system data were obtained from USDA (USDA 1998d). It was assumed those operations with less than 200 head use pasture, range, or paddock systems. The percent of waste by system was estimated using the USDA data broken out by geographic region and farm size. Farm-size distribution data reported in the 1992 and 1997 Census of Agriculture (USDA 1999e) were used to determine the percentage of all swine utilizing the various manure management systems. The reported manure management systems were deep pit, liquid/slurry (also includes above- and below-ground slurry), anaerobic lagoon, and solid storage (also includes solids separated from liquids). Some swine operations reported using more than one management system; therefore, the total percent of systems reported by USDA for a region and farm size is greater than 100 percent. Typically, this means that some of the manure at a swine operation is handled in one system (e.g., liquid system), and some of the manure is handled in another system (e.g., dry system). However, it is unlikely that the same manure is moved from one system to another. Therefore, to avoid double counting emissions, the reported percentages of systems in use were adjusted to equal a total of 100 percent, using the same distribution of systems, as explained under "Dairy Cows". *Sheep:* It was assumed that all sheep wastes not deposited on feedlots were deposited on pasture, range, or paddock lands (Anderson 2000). Goats/Horses: Estimates of manure management distribution were obtained from EPA's previous estimates (EPA 1992). Poultry – Layers: Waste management system data for layers for 1990 were obtained from Appendix H of Global Methane Emissions from Livestock and Poultry Manure (EPA 1992). The percentage of layer operations using a shallow pit flush house with anaerobic lagoon or high-rise house without bedding was obtained for 1999 from United Egg Producers, voluntary survey, 1999 (UEP 1999). These data were augmented for key poultry states (AL, AR, CA, FL, GA, IA, IN, MN, MO, NC, NE, OH, PA, TX, and WA) with USDA data (USDA 2000i). It was assumed that the change in system usage between 1990 and 1999 is proportionally distributed among those years of the inventory. It was assumed that system usage in 2000 was equal to that estimated for 1999. It was also assumed that 1 percent of poultry wastes are deposited on pasture, range, or paddock lands (EPA 1992). *Poultry - Broilers/Turkeys:* The percentage of turkeys and broilers on pasture or in high-rise houses without bedding was obtained from *Global Methane Emissions from Livestock and Poultry Manure* (EPA1992). It was assumed that 1 percent of poultry wastes are deposited in pastures, range, and paddocks (EPA 1992). #### **Step 4: Emission Factor Calculations** Methane conversion factors (MCFs) and nitrous oxide emission factors (EFs) used in the emission calculations were determined using the methodologies shown below: ## Methane Conversion Factors (MCFs) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2000) for anaerobic lagoon systems published default methane conversion factors of 0 to 100 percent, which reflects the wide range in performance that may be achieved with these systems. There exist relatively few data points on which to determine country-specific MCFs for these systems. Therefore, a climate-based approach was identified to estimate MCFs for anaerobic lagoon and other liquid storage systems. The following approach was used to develop the MCFs for liquid systems, and is based on the van't Hoff-Arrhenius equation used to forecast performance of biological reactions. One practical way of estimating MCFs for liquid manure handling systems is based on the mean ambient temperature and the van't Hoff-Arrhenius equation with a base temperature of 30°C, as shown in the following equation (Safley and Westerman 1990): $$f = \exp\left[\frac{E(T_2 - T_1)}{RT_1T_2}\right]$$ Where, $T_1 = 303.16K$ T₂ = ambient temperature (K) for climate zone (in this case, a weighted value for each state) E = activation energy constant (15,175 cal/mol) R = ideal gas constant (1.987 cal/K mol) The factor "f" represents the proportion of volatile solids that are biologically available for conversion to methane based on the temperature of the system. The temperature is assumed equal to the ambient
temperature. For colder climates, a minimum temperature of 5°C was established for uncovered anaerobic lagoons and 7.5°C for other liquid manure handling systems. For those animal populations using liquid systems (i.e., dairy cow, dairy heifer, layers, beef on feedlots, and swine) monthly average state temperatures were based on the counties where the specific animal population resides (i.e., the temperatures were weighted based on the percent of animals located in each county). The average county and state temperature data were obtained from the National Climate Data Center (NOAA 2001), and the county population data were based on 1992 and 1997 Census data (USDA 1999e). County population data for 1990 and 1991 were assumed to be the same as 1992; county population data for 1998 through 2000 were assumed to be the same as 1997; and county population data for 1993 through 1996 were extrapolated based on 1992 and 1997 data. Annual MCFs for liquid systems are calculated as follows for each animal type, state, and year of the inventory: - 1) Monthly temperatures are calculated by using county-level temperature and population data. The weighted-average temperature for a state is calculated using the population estimates and average monthly temperature in each county. - 2) Monthly temperatures are used to calculate a monthly van't Hoff-Arrhenius "f" factor, using the equation presented above. A minimum temperature of 5°C is used for anaerobic lagoons and 7.5°C is used for liquid/slurry and deep pit systems. - 3) Monthly production of volatile solids that are added to the system is estimated based on the number of animals present and, for lagoon systems, adjusted for a management and design practices factor. This factor accounts for other mechanisms by which volatile solids are removed from the management system prior to conversion to methane, such as solids being removed from the system for application to cropland. This factor, equal to 0.8, has been estimated using currently available methane measurement data from anaerobic lagoon systems in the United States (ERG 2001). - 4) The amount of volatile solids available for conversion to methane is assumed to be equal to the amount of volatile solids produced during the month (from Step 3). For anaerobic lagoons, the amount of volatile solids available also includes volatile solids that may remain in the system from previous months. - 5) The amount of volatile solids consumed during the month is equal to the amount available for conversion multiplied by the "f" factor. - 6) For anaerobic lagoons, the amount of volatile solids carried over from one month to the next is equal to the amount available for conversion minus the amount consumed. - 7) The estimated amount of methane generated during the month is equal to the monthly volatile solids consumed multiplied by the maximum methane potential of the waste (B_0). - 8) The annual MCF is then calculated as: MCF $$_{(annual)} = CH_4$$ generated $_{(annual)} / (VS generated $_{(annual)} \times B_o)$$ In order to account for the carry over of volatile solids from the year prior to the inventory year for which estimates are calculated, it is assumed in the MCF calculation for lagoons that a portion of the volatile solids from October, November, and December of the year prior to the inventory year are available in the lagoon system starting January of the inventory year. Following this procedure, the resulting MCF accounts for temperature variation throughout the year, residual volatile solids in a system (carryover), and management and design practices that may reduce the volatile solids available for conversion to methane. The methane conversion factors presented in Table L-4 by state and waste management system represent the average MCF for 2000 by state for all animal groups located in that state. However, in the calculation of methane emissions, specific MCFs for each animal type in the state are used. #### Nitrous Oxide Emission Factors Nitrous oxide emission factors for all manure management systems were set equal to the default IPCC factors (IPCC 2000). ## Step 5: Weighted Emission Factors For beef cattle, dairy cattle, swine, and poultry, the emission factors for both methane and nitrous oxide were weighted to incorporate the distribution of wastes by management system for each state. The following equation was used to determine the weighted MCF for a particular animal type in a particular state: $$MCF$$ animal, state = $\sum_{system} (MCF$ system, state \times % $Manure$ animal, system, state) Where: MCF_{animal, state} = Weighted MCF for that animal group and state $MCF_{system. state} = MCF$ for that system and state (see Step 4) % Manure_{animal, system, state} = Percent of manure managed in the system for that animal group in that state (expressed as a decimal) The weighted nitrous oxide emission factor for a particular animal type in a particular state was determined as follows: $$EF$$ animal, state = $\sum_{system} (EF_{system} \times \% Manure$ animal, system, state) Where, EF_{animal, state} = Weighted emission factor for that animal group and state EF_{system} = Emission factor for that system (see Step 4) % Manure_{animal, system, state} = Percent of manure managed in the system for that animal group in that state (expressed as a decimal) Data for the calculated weighted factors for 1992 came from the 1992 Census of Agriculture, combined with assumptions on manure management system usage based on farm size, and were also used for 1990 and 1991. Data for the calculated weighted factors for 1997 came from the 1997 Census of Agriculture, combined with assumptions on manure management system usage based on farm size, and were also used for 1998, 1999, and 2000. Factors for 1993 through 1996 were calculated by interpolating between the two sets of factors. A summary of the weighted MCFs used to calculate beef feedlot, dairy cow and heifer, swine, and poultry emissions for 2000 are presented in Table L-5. ## Step 6: Methane and Nitrous Oxide Emission Calculations For beef feedlot cattle, dairy cows, dairy heifers, swine, and poultry, methane emissions were calculated for each animal group as follows: Methane animal group = $$\sum_{\text{state}} (Population \times VS \times B_o \times MCF_{\text{animal, state}} \times 0.662)$$ Where: $Methane_{animal\ group} = methane\ emissions\ for\ that\ animal\ group\ (kg\ CH_4/yr)$ Population = annual average state animal population for that animal group (head) VS = total volatile solids produced annually per animal (kg/yr/head) B₀ = maximum methane producing capacity per kilogram of VS (m³ CH₄/kg VS) MCF_{animal, state} = weighted MCF for the animal group and state (see Step 5) $0.662 = \text{conversion factor of m}^3 \text{ CH}_4 \text{ to kilograms CH}_4 \text{ (kg CH}_4/\text{m}^3 \text{ CH}_4)$ Methane emissions from other animals (i.e., sheep, goats, and horses) were based on the 1990 methane emissions estimated using the detailed method described in *Anthropogenic Methane Emissions in the United States:* Estimates for 1990, Report to Congress (EPA 1993). This approach is based on animal-specific manure characteristics and management system data. This process was not repeated for subsequent years for these other animal types. Instead, national populations of each of the animal types were used to scale the 1990 emissions estimates to the period 1991 through 2000. Nitrous oxide emissions were calculated for each animal group as follows: Nitrous Oxide animal group = $$\sum_{state} (Population \times N_{ex} \times EF_{animal, state} \times 44 / 28)$$ #### Where: Nitrous Oxide_{animal group} = nitrous oxide emissions for that animal group (kg/yr) Population = annual average state animal population for that animal group (head) N_{ex} = total Kjeldahl nitrogen excreted annually per animal (kg/yr/head) $EF_{animal, state}$ = weighted nitrous oxide emission factor for the animal group and state, kg N_2O-N/kg N excreted (see Step 5) 44/28 = conversion factor of N₂O-N to N₂O Emission estimates are summarized in Table L-6 and Table L-7. Table L-1: Livestock Population (1,000 Head) | Dairy Cattle 14,443 13,890 13,850 13,660 13,660 13,060 13,060 13,070 13,080 13,870 13,060 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,090 13,000 1 | Animal Type | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
--|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | ows 10 0007 9,883 9,714 9,679 9,504 9,491 9,410 9,309 9,200 9,142 eller 1,354 1,564 1,415 4,088 1,415 1,415 1,418 | Dairy Cattle | 14,143 | 13,980 | 13,830 | 13,767 | 13,566 | 13,502 | 13,305 | 13,138 | 12,992 | 13,026 | 13,070 | | eller 4,135 4,097 4,116 4,088 4,062 4,011 3,895 3,829 3,793 3,884 | Dairy Cows | 10,007 | 6,883 | 9,714 | 6/9'6 | 9,504 | 9,491 | 9,410 | 6,309 | 9,200 | 9,142 | 9,220 | | Syline 56,476 58,530 58,016 59,51 58,899 56,220 58,728 61,991 60,248 Swine 47,043 49,246 51,274 50,889 52,669 51,973 49,581 15,189 55,150 53,871 at 4c60 lbs. 11,324 19,246 51,274 10,434 20,157 19,885 12,784 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 11,235 11,048 | Dairy Heifer | 4,135 | 4,097 | 4,116 | 4,088 | 4,062 | 4,011 | 3,895 | 3,829 | 3,793 | 3,884 | 3,850 | | Swine 47,043 49,246 51,274 50,859 52,669 51,973 49,581 51,888 55,150 53,871 at 42,040 51,272 19,881 19,444 20,157 11,374 12,374 | Swine | 53,941 | 56,476 | 58,530 | 58,016 | 59,951 | 28,899 | 56,220 | 58,728 | 61,991 | 60,245 | 58,892 | | etch (b.s.) 18,359 19,212 19,834 20,157 19,656 18,851 19,224 19,834 20,157 19,656 18,851 19,274 13,552 13,252 at 102-179 (bs.) 11,734 12,334 12,656 13,017 12,835 12,157 12,754 13,552 13,256 at 120-179 (bs.) 7,440 9,840 10,253 10,334 10,547 10,170 10,480 11,035 11,043 at 180 (bs.) 7,231 7,231 7,282 7,282 6,926 6,639 6,840 6,841 6,374 10,481 Helfers 86,087 87,261 88,546 90,321 22,527 92,267 94,391 94,269 6,840 6,841 6,342 8,452 8,432 8,432 <td>Market Swine</td> <td>47,043</td> <td>49,246</td>
<td>51,274</td> <td>50,859</td> <td>52,669</td> <td>51,973</td> <td>49,581</td> <td>51,888</td> <td>55,150</td> <td>53,871</td> <td>52,658</td> | Market Swine | 47,043 | 49,246 | 51,274 | 50,859 | 52,669 | 51,973 | 49,581 | 51,888 | 55,150 | 53,871 | 52,658 | | 2400 1,334 12,839 12,656 13,017 12,836 12,157 12,734 13,324 12,656 13,017 12,836 12,157 12,734 13,332 13,266 13,017 12,835 12,163 13,252 13,252 13,252 13,252 13,252 13,252 13,252 13,252 13,252 13,253 13,263 40,469 96,472 96,452 96,452 96,463 96,463 96,472 96,452 96,452 96,452 96,463 86,463 86,483 86,483 86,483 86,484 <td>Market <60 lbs.</td> <td>18,359</td> <td>19,212</td> <td>19,851</td> <td>19,434</td> <td>20,157</td> <td>19,656</td> <td>18,851</td> <td>19,886</td> <td>20,691</td> <td>19,928</td> <td>19,582</td> | Market <60 lbs. | 18,359 | 19,212 | 19,851 | 19,434 | 20,157 | 19,656 | 18,851 | 19,886 | 20,691 | 19,928 | 19,582 | | at 120-179 lbs. 9,440 9,840 10,253 10,334 10,671 10,545 10,110 10,480 11,235 11,045 11,049 lbs. 7,510 7,821 8,331 8,435 8,824 8,937 8,463 8,786 9,672 9,645 141,040 lbs. 7,510 7,221 8,331 8,435 8,244 8,937 8,463 8,786 9,673 9,645 141,041 8,083 17,221 8,722 9,243 7,736 7,736 7,736 7,736 17,047 11,047 10,271 10,271 10,271 11,047 10,271 10, | Market 60-119 lbs. | 11,734 | 12,374 | 12,839 | 12,656 | 13,017 | 12,836 | 12,157 | 12,754 | 13,552 | 13,256 | 12,933 | | gy Swine 7,510 7,821 8,832 8,937 8,463 8,768 9,672 9,643 8,434 | Market 120-179 lbs. | 9,440 | 9,840 | 10,253 | 10,334 | 10,671 | 10,545 | 10,110 | 10,480 | 11,235 | 11,043 | 10,753 | | title 68,09 7,231 7,255 7,157 7,282 6,926 6,639 6,840 6,841 6,374 title 86,087 87,267 88,548 90,321 92,571 94,391 94,269 92,290 90,730 90,032 Sleers 7,38 7,920 7,581 7,984 7,797 7,783 7,395 4,495 94,269 96,290 90,730 90,033 Helicits 3,3421 4,035 3,226 2,797 3,795 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,047 3,995 4,459 4,736 3,995 3,402 3,995 3,402 | Market >180 lbs. | 7,510 | 7,821 | 8,331 | 8,435 | 8,824 | 8,937 | 8,463 | 8,768 | 9,672 | 9,645 | 6,390 | | title 86,087 87,267 88,548 90,321 92,571 94,391 94,269 92,290 90,730 90,032 Steers 7,338 7,920 7,581 7,984 7,797 7,763 7,380 7,644 7,882 7,782 Helfers 3,621 4,035 3,226 3,971 3,965 4,047 3,999 4,396 4,579 7,782 Julis 2,180 2,198 2,220 2,239 2,396 2,392 2,490 3,492 3,4143 3,492 3,4143 3,394 3,4143 3,402 3,4143 3,492 3,4143 3,4142 3,4142 3,4142 | Breeding Swine | 668'9 | 7,231 | 7,255 | 7,157 | 7,282 | 6,926 | 6,639 | 6,840 | 6,841 | 6,374 | 6,233 | | Steeris 1,338 7,920 7,581 7,984 7,797 7,763 7,380 7,644 7,845 7,785 7,785 1,485 1,485 3,621 4,035 3,626 3,971 3,965 4,047 3,999 4,396 4,459 4,459 4,578 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,485 1,44,68 1,485 1,485 1,44,68 1,485 1,44,68 1,485 1,44,68 1,46,68 1,46,69 1,46,68 1, | Beef Cattle | 86,087 | 87,267 | 88,548 | 90,321 | 92,571 | 94,391 | 94,269 | 92,290 | 90,730 | 90,032 | 89,403 | | Helfers 3,621 4,035 3,626 3,971 3,965 4,047 3,999 4,396 4,459 4,578 allos 2,180 2,180 2,198 2,220 2,239 2,392 2,392 2,392 2,3854 24,118 24,209 24,586 25,170 25,042 2,335 24,001 23,895 alvess 23,979 7,364 8,031 7,935 8,346 8,693 9,077 8,452 8,050 7,864 ows 32,677 32,960 33,453 34,132 35,101 35,645 35,509 34,629 34,143 33,948 and on Feed 10,301 10,211 9,777 9,178 13,894 13,894 140,998 13,432 34,132 34,132 14,249 13,894 15,349 14,249,98 13,434 13,894 14,346 15,349 14,14,26 11,249 11,44,26 11,44,68 14,14,26 11,44,68 14,14,26 11,44,68 14,14,26 11,44,68 14,467 16,510 14,45,14 11,44,26 11,44,68 14,14,42 14,44,61 14 | Feedlot Steers | 7,338 | 7,920 | 7,581 | 7,984 | 797,7 | 7,763 | 7,380 | 7,644 | 7,845 | 7,782 | 8,280 | | lils 2,180 2,180 2,198 2,220 2,239 2,306 2,305 2,392 2,392 2,325 2,235 2,241 alvess 23,909 23,864 24,118 24,209 24,586 25,170 25,042 24,363 24,001 23,895 eifers 32,677 32,960 7,364 8,031 7,935 8,345 34,132 35,101 35,645 35,509 34,629 34,629 34,629 7,786 and ton Feed 10,301 10,211 9,777 9,178 8,965 8,214 7,719 7,23 | Feedlot Heifers | 3,621 | 4,035 | 3,626 | 3,971 | 3,965 | 4,047 | 3,999 | 4,396 | 4,459 | 4,578 | 4,872 | | alves 23,909 23,864 24,118 24,209 24,586 25,170 25,042 24,363 24,001 23,895 eifers 8,872 8,938 9,520 9,850 10,469 10,680 10,869 10,481 9,998 9,725 eiers 7,490 7,364 8,031 7,935 8,340 8,895 8,695 34,629 8,972 8,805 7,864 9,725 and ton Feed 10,301 10,211 9,777 9,178 8,965 8,214 7,719 7,293 8,465 8,246 8,628 7,719 7,293 7,110 6,586 and 1,058 9,721 10,211 9,777 9,178 8,965 8,214 7,719 7,293 7,110
6,586 11,630 11,631 11,718 12,410 2,410 2,305 2,200 2,095 11,990 1,900 1 | NOF Bulls | 2,180 | 2,198 | 2,220 | 2,239 | 2,306 | 2,392 | 2,392 | 2,325 | 2,235 | 2,241 | 2,196 | | eifers 8,872 8,938 9,520 9,880 10,469 10,680 10,481 9,998 9,725 evers 7,490 7,364 8,031 7,935 8,346 8,693 9,077 8,452 8,050 7,864 ows 11,358 11,174 10,771 9,836 8,465 35,609 34,629 34,132 33,948 not on Feed 1,358 11,174 10,777 9,178 8,965 8,246 35,509 34,629 34,143 33,948 on Feed 1,058 9,62 10,201 9,836 8,246 35,509 34,629 34,110 7,825 on Feed 1,058 9,62 1,020 1,020 1,021 8,245 8,246 1,714 7,121 8,455 8,246 8,246 8,628 9,077 8,459 34,132 33,948 9,073 1,714 9,725 9,073 1,714 9,725 9,073 1,714 9,725 9,073 1,714 9,725 9,073 | NOF Calves | 23,909 | 23,854 | 24,118 | 24,209 | 24,586 | 25,170 | 25,042 | 24,363 | 24,001 | 23,895 | 23,508 | | beers 7,490 7,364 8,031 7,935 8,346 8,693 9,077 8,452 8,050 7,864 7,864 11,358 11,174 10,797 10,201 9,836 8,989 8,465 8,024 7,213 33,948 | NOF Heifers | 8,872 | 8,938 | 9,520 | 6,850 | 10,469 | 10,680 | 10,869 | 10,481 | 866'6 | 9,725 | 9,352 | | OWS 32,677 32,960 33,453 34,132 35,101 35,645 35,569 34,629 34,143 33,948 11,358 11,174 10,797 10,201 9,836 8,926 8,465 8,024 7,732 7,116 6,586 on Feed 1,058 963 1,020 1,023 1,023 1,023 7,13 775 731 7,13 6,586 on Feed 1,058 963 1,020 1,023 871 775 7,23 7,110 6,586 on Feed 2,516 2,516 2,516 2,410 2,305 2,009 1,900 1,900 1,900 1yr. 115,37,074 1,594,944 1,649,998 1,704,135 1,679,704 1,882,078 1,965,91 1,900 1,990 1yr. 119,551 117,178 121,103 131,688 165,230 1,65,948 1,040,96 105,494 133,433 146,389 140,966 106,949 171,171 165,948 165,343 165,343< | NOF Steers | 7,490 | 7,364 | 8,031 | 7,935 | 8,346 | 8,693 | 6,077 | 8,452 | 8,050 | 7,864 | 7,247 | | 11,358 11,174 10,797 10,201 9,836 8,989 8,465 8,024 7,825 7,215 on Feed 10,301 10,211 9,777 9,178 8,965 8,214 7,719 7,293 7,110 6,586 on Feed 1,058 963 1,020 1,023 871 775 745 731 715 629 2,516 2,516 2,516 2,410 2,305 2,009 1,990 1,990 1,990 1yr. 1,537,04 1,594,94 1,649,98 1,707,422 1,769,135 1,679,704 1,882,078 1,963,91 1,903,91 1yr. 119,551 117,178 121,103 131,688 165,230 165,874 171,171 169,916 177,391 1yr. 153,916 162,943 163,433 165,230 165,874 171,171 169,916 177,391 3,3mo 34,222 34,272 34,716 37,491 46,694 47,365 48,054 54,056 56,654< | NOF Cows | 32,677 | 32,960 | 33,453 | 34,132 | 35,101 | 35,645 | 35,509 | 34,629 | 34,143 | 33,948 | 33,948 | | not on Feed 10,301 10,211 9,777 9,178 8,965 8,214 7,719 7,293 7,110 6,586 on Feed 1,058 963 1,020 1,023 871 775 745 731 715 6,286 2,516 2,516 2,516 2,516 2,410 2,305 2,200 2,095 1,990 1,990 1,990 1yr. 1,534,04 1,649,98 1,707,422 1,769,135 1,679,704 1,882,078 1,926,790 1,990 1,990 1yr. 119,551 117,178 121,103 131,688 135,094 1,382,078 1,926,790 1,963,919 2,007,517 1yr. 119,551 117,178 121,103 131,688 163,433 165,230 165,874 171,171 169,916 177,391 3 mo 34,222 34,710 33,833 33,159 34,004 33,518 48,054 47,365 48,054 54,766 56,054 56,054 56,054 56,054 56,054 | Sheep | 11,358 | 11,174 | 10,797 | 10,201 | 9'836 | 8,989 | 8,465 | 8,024 | 7,825 | 7,215 | 7,032 | | on Feed 1,058 963 1,020 1,023 871 775 745 731 715 629 2,516 2,516 2,516 2,410 2,305 2,200 2,095 1,990 1,990 1,990 1y. 1,537,074 1,594,944 1,649,998 1,707,422 1,769,135 1,679,704 1,882,078 1,926,790 1,990 1,990 1y. 119,551 117,178 121,103 131,688 135,044 1,882,078 1,906,779 1,693,19 2,007,517 1y. 119,551 117,178 121,103 131,688 1,53,431 1,53,431 1,53,434 1,53,432 1,64,694 47,365 48,054 54,766 56,054 38,587 3s 3s 42,344 45,160 47,941 46,694 47,365 48,054 54,766 56,054 56,054 56,054 56,054 56,054 56,054 38,587 3s 4s 4s 4s 4s 4s 4s 4s | Sheep not on Feed | 10,301 | 10,211 | 7177 | 9,178 | 8,965 | 8,214 | 7,719 | 7,293 | 7,110 | 985'9 | 6,419 | | 2,516 2,516 2,410 2,305 2,200 2,095 1,990 <th< td=""><td>Sheep on Feed</td><td>1,058</td><td>696</td><td>1,020</td><td>1,023</td><td>871</td><td>775</td><td>745</td><td>731</td><td>715</td><td>679</td><td>613</td></th<> | Sheep on Feed | 1,058 | 696 | 1,020 | 1,023 | 871 | 775 | 745 | 731 | 715 | 679 | 613 | | 1,537,074 1,694,948 1,707,422 1,769,135 1,679,704 1,882,078 1,926,790 1,963,919 2,007,517 1yr. 119,551 117,178 121,103 131,688 135,094 133,841 138,048 140,966 150,778 151,914 laying 153,916 162,943 163,397 156,938 163,433 165,230 165,874 171,171 169,916 177,391 >3 mo 34,222 34,710 33,833 33,159 34,004 33,518 35,578 39,664 38,587 <3 mo | Goats | 2,516 | 2,516 | 2,516 | 2,410 | 2,305 | 2,200 | 2,095 | 1,990 | 1,990 | 1,990 | 1,990 | | 119,551 117,178 121,103 131,688 135,094 133,841 138,048 140,966 150,778 151,914 151,914 153,916 162,943 163,397 158,938 165,230 165,874 171,171 169,916 177,391 177,391 153,916 42,344 45,160 47,941 46,694 47,365 48,054 54,766 56,054 58,775 17,066,209 17,115,845 17,164,089 1,217,147 1,275,916 106,960 108,112 105,088 97,229 90,098 17,685 57,160 55,180 5 | Poultry | 1,537,074 | 1,594,944 | 1,649,998 | 1,707,422 | 1,769,135 | 1,679,704 | 1,882,078 | 1,926,790 | 1,963,919 | 2,007,517 | 2,025,188 | | laying 153,916 162,943 163,397 158,938 163,433 165,230 165,814 171,171 169,916 177,391 177,391 184,222 34,272 34,710 33,833 33,159 34,004 33,518 35,578 39,664 38,587 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,391 173,891
173,891 | Hens >1 yr. | 119,551 | 117,178 | 121,103 | 131,688 | 135,094 | 133,841 | 138,048 | 140,966 | 150,778 | 151,914 | 153,222 | | 34,222 34,272 34,710 33,833 33,159 34,004 33,518 35,578 39,664 38,587 38,587 38,945 42,344 45,160 47,941 46,694 47,365 48,054 54,766 56,054 58,775 5 6,857 7,115,845 1,164,089 1,217,147 1,275,916 1,184,667 1,381,229 1,411,673 1,442,596 1,144,26 110,635 107,469 106,960 108,112 105,088 97,229 90,098 5,150 5,180 5,180 5,180 5,210 5,210 5,230 5,230 5,230 5,317 | Pullets laying | 153,916 | 162,943 | 163,397 | 158,938 | 163,433 | 165,230 | 165,874 | 171,171 | 169,916 | 177,391 | 178,983 | | -3 mo 38,945 42,344 45,160 47,941 46,694 47,365 48,054 54,766 56,054 56,054 58,775 sins 6,545 6,857 7,113 7,240 7,369 7,637 7,243 7,549 7,687 9,659 s 1,066,209 1,115,845 1,164,089 1,217,147 1,275,916 1,184,667 1,381,229 1,411,673 1,442,596 1,481,093 is 117,685 114,426 110,635 107,469 106,960 108,112 105,088 97,229 90,098 5,150 5,180 5,200 5,210 5,210 5,230 5,250 5,317 | Pullets >3 mo | 34,222 | 34,272 | 34,710 | 33,833 | 33,159 | 34,004 | 33,518 | 35,578 | 39,664 | 38,587 | 38,325 | | ins 6,545 6,857 7,113 7,240 7,369 7,637 7,243 7,549 7,682 9,659 7,653 1,066,209 1,115,845 1,164,089 1,217,147 1,275,916 1,184,667 1,381,229 1,411,673 1,442,596 1,481,093 117,685 115,504 114,426 110,635 107,469 106,960 108,112 105,088 97,229 90,098 5,150 5,180 5,200 5,210 5,210 5,230 5,230 5,230 5,317 | Pullets <3 mo | 38,945 | 42,344 | 45,160 | 47,941 | 46,694 | 47,365 | 48,054 | 54,766 | 56,054 | 58,775 | 56,083 | | s 1,066,209 1,115,845 1,164,089 1,217,147 1,275,916 1,184,667 1,381,229 1,411,673 1,442,596 1,481,093 s 117,685 115,504 114,426 110,635 107,469 106,960 108,112 105,088 97,229 90,098 5,150 5,180 5,200 5,210 5,190 5,210 5,230 5,230 5,230 5,317 | Chickens | 6,545 | 6,857 | 7,113 | 7,240 | 7,369 | 7,637 | 7,243 | 7,549 | 7,682 | 6'9'6 | 8,074 | | s 117,685 115,504 114,426 110,635 107,469 106,960 108,112 105,088 97,229 90,098 5,150 5,180 5,210 5,190 5,210 5,210 5,230 5,230 5,250 5,317 | Broilers | 1,066,209 | 1,115,845 | 1,164,089 | 1,217,147 | 1,275,916 | 1,184,667 | 1,381,229 | 1,411,673 | 1,442,596 | 1,481,093 | 1,502,296 | | 5,150 5,180 5,200 5,210 5,190 5,210 5,230 5,230 5,250 5,317 | Turkeys | 117,685 | 115,504 | 114,426 | 110,635 | 107,469 | 106,960 | 108,112 | 105,088 | 97,229 | 860'06 | 88,205 | | | Horses | 5,150 | 5,180 | 5,200 | 5,210 | 5,190 | 5,210 | 5,230 | 5,230 | 5,250 | 5,317 | 5,320 | Note: Totals may not sum due to independent rounding. Table L-2: Waste Characteristics Data | | | Total Kjeldahl | Maximum Methane | | |--|-------------------|-----------------------|---|-----------------------| | | | Nitrogen, Nex | Generation | Volatile Solids, | | | Average | (kg/day per | Potential, B _o (m ³ | VS (kg/day per | | Animal Group | TAM (kg) Source | 1,000 kg mass) Source | CH4/kg VS added) Source | 1,000 kg mass) Source | | Dairy Cow | 604 Safley 2000 | 0.44 USDA 1996a | 0.24 Morris 1976 | Table L-3 | | Dairy Heifer | 476 Safley 2000 | 0.31 USDA 1996a | 0.17 Bryant et. al. 1976 | 7.77 USDA 1996a | | Feedlot Steers | 420 USDA 1996a | 0.30 USDA 1996a | 0.33 Hashimoto 1981 | 5.44 USDA 1996a | | Feedlot Heifers | 420 USDA 1996a | 0.30 USDA 1996a | 0.33 Hashimoto 1981 | 5.44 USDA 1996a | | NOF Bulls | 750 Safley 2000 | 0.31 USDA 1996a | 0.17 Hashimoto 1981 | 6.04 USDA 1996a | | NOF Calves | 159 USDA 1998c | 0.30 USDA 1996a | 0.17 Hashimoto 1981 | 6.41 USDA 1996a | | NOF Heifers | 420 USDA 1996a | 0.31 USDA 1996a | 0.17 Hashimoto 1981 | 6.04 USDA 1996a | | NOF Steers | 318 Safley 2000 | 0.31 USDA 1996a | 0.17 Hashimoto 1981 | 6.04 USDA 1996a | | NOF Cows | 590 Safley 2000 | 0.33 USDA 1996a | 0.17 Hashimoto 1981 | 6.20 USDA 1996a | | Market Swine <60 lbs. | 15.88 Safley 2000 | 0.60 USDA 1996a | 0.48 Hashimoto 1984 | 8.80 USDA 1996a | | Market Swine 60-119 lbs. | 40.60 Safley 2000 | 0.42 USDA 1996a | 0.48 Hashimoto 1984 | 5.40 USDA 1996a | | Market Swine 120-179 lbs. | 67.82 Safley 2000 | 0.42 USDA 1996a | 0.48 Hashimoto 1984 | 5.40 USDA 1996a | | Market Swine >180 lbs. | 90.75 Safley 2000 | 0.42 USDA 1996a | 0.48 Hashimoto 1984 | 5.40 USDA 1996a | | Breeding Swine | 198 Safley 2000 | 0.24 USDA 1996a | 0.48 Hashimoto 1984 | 2.60 USDA 1996a | | Sheep | 27 ASAE 1999 | 0.42 ASAE 1999 | NA NA | NA NA | | Goats | 64 ASAE 1999 | 0.45 ASAE 1999 | NA NA | NA NA | | Horses | 450 ASAE 1999 | 0.30 ASAE 1999 | NA NA | NA NA | | Hens $>/= 1$ yr | 1.8 ASAE 1999 | 0.83 USDA 1996a | 0.39 Hill 1982 | 10.8 USDA 1996a | | Pullets - laying age | 1.8 ASAE 1999 | 0.62 USDA 1996a | 0.39 Hill 1982 | 9.7 USDA 1996a | | Pullets - >/=3mo | 1.8 ASAE 1999 | 0.62 USDA 1996a | 0.39 Hill 1982 | 9.7 USDA 1996a | | Pullets - =3mo</td <td>1.8 ASAE 1999</td> <td>0.62 USDA 1996a</td> <td>0.39 Hill 1982</td> <td>9.7 USDA 1996a</td> | 1.8 ASAE 1999 | 0.62 USDA 1996a | 0.39 Hill 1982 | 9.7 USDA 1996a | | Other Chickens | 1.8 ASAE 1999 | 0.83 USDA 1996a | 0.39 Hill 1982 | 10.8 USDA 1996a | | Broilers | 0.9 ASAE 1999 | 1.10 USDA 1996a | 0.36 Hill 1984 | 15.0 USDA 1996a | | Turkeys | 6.8 ASAE 1999 | 0.74 USDA 1996a | 0.36 Hill 1984 | 9.7 USDA 1996a | Table L-3: Estimated Dairy Cow Volatile Solids Production Rate By State for 2000 | State | Volatile Solids ¹ (kg/day/1000 kg) | |----------------|---| | Alabama | 7.07 | | Alaska | 7.28 | | Arizona | 9.32 | | Arkansas | 6.52 | | California | 9.20 | | Colorado | 9.30 | | Connecticut | 8.48 | | Delaware | 7.42 | | Florida | 7.67 | | Georgia | 7.93 | | Hawaii | 7.23 | | Idaho | 9.11 | | Illinois | 8.22 | | Indiana | 7.88 | | lowa | 8.46 | | | | | Kansas | 8.00
6.65 | | Kentucky | | | Louisiana | 6.38 | | Maine | 8.00 | | Maryland | 7.80 | | Massachusetts | 8.10 | | Michigan | 8.65 | | Minnesota | 8.31 | | Mississippi | 7.49 | | Missouri | 7.34 | | Montana | 8.23 | | Nebraska | 7.86 | | Nevada | 8.66 | | New Hampshire | 8.15 | | New Jersey | 7.97 | | New Mexico | 9.14 | | New York | 8.20 | | North Carolina | 8.01 | | North Dakota | 7.21 | | Ohio | 8.09 | | Oklahoma | 7.18 | | Oregon | 8.60 | | Pennsylvania | 8.40 | | Rhode Island | 7.67 | | South Carolina | 7.79 | | South Dakota | 7.78 | | Tennessee | 7.38 | | Texas | 7.93 | | Utah | 8.25 | | Vermont | 8.24 | | Virginia | 7.73 | | Washington | 9.54 | | West Virginia | 7.65 | | Wisconsin | 8.18 | | Wyoming | 6.94 | | vvyoning | U.7 1 | 1 Volatile solids production estimates based on state average annual milk production rates, combined with a mathematical relationship of volatile solids to milk production (USDA 1996a). Table L-4: Methane Conversion Factors By State for Liquid Systems 2 for 2000 | State | Liquid/Slurry and Deep Pit | Anaerobic Lagoon | |------------------------------|----------------------------|------------------| | Alabama | 0.4122 | 0.7538 | | Alaska | 0.1472 | 0.4677 | | Arizona | 0.4919 | 0.7689 | | Arkansas | 0.3823 | 0.7536 | | California | 0.3440 | 0.7330 | | Colorado | 0.2336 | 0.6705 | | Connecticut | 0.2337 | 0.6642 | | Delaware | 0.2927 | 0.7124 | | Florida | 0.5193 | 0.7684 | | Georgia | 0.3919 | 0.7411 | | Hawaii | 0.5827 | 0.7869 | | Idaho | 0.2247 | 0.6570 | | Illinois | 0.2870 | 0.7128 | | Indiana | 0.2714 | 0.6976 | | Iowa | 0.2627 | 0.6981 | | Kansas | 0.3439 | 0.7515 | | Kentucky | 0.3151 | 0.7241 | | Louisiana | 0.4790 | 0.7631 | | Maine | 0.1917 | 0.6025 | | Maryland | 0.2786 | 0.6999 | | Massachusetts | 0.2243 | 0.6523 | | Michigan | 0.2295 | 0.6576 | | Minnesota | 0.2335 | 0.6675 | | Mississippi | 0.4308 | 0.7584 | | Missouri | 0.3245 | 0.7361 | | Montana | 0.2073 | 0.6337 | | Nebraska | 0.2856 | 0.7197 | | Nevada | 0.2466 | 0.6787 | | New Hampshire | 0.2400 | 0.6176 | | New Jersey | 0.2605 | 0.6896 | | New Mexico | 0.2003 | 0.7328 | | New York | 0.3272 | 0.6402 | | North Carolina | 0.3346 | 0.7255 | | North Dakota | 0.3346 | 0.7255 | | Ohio | 0.2103 | 0.6841 | | Oklahoma | 0.2573 | 0.7602 | | | 0.3933 | 0.6291 | | Oregon | | 0.6764 | | Pennsylvania
Rhode Island | 0.2485 | | | South Carolina | 0.2420 | 0.6765
0.7401 | | | 0.3831 | | | South Dakota | 0.2496 | 0.6911 | | Tennessee | 0.3390 | 0.7367 | | Texas | 0.4622 | 0.7613 | | Utah | 0.2673 | 0.7029 | | Vermont | 0.1965 | 0.6090 | | Virginia | 0.2829 | 0.7009 | | Washington | 0.2126 | 0.6329 | | West Virginia | 0.2607 | 0.6850 | | Wisconsin | 0.2278 | 0.6595 | | Wyoming | 0.2184 | 0.6513 | ² As defined by IPCC (IPCC 2000). Table L-5: Weighted Methane Conversion Factors for 2000 | State | Beef Feedlot- | Beef Feedlot- | Dairy Cow | Dairy Heifer | Swine - | Swine - | Layer | Broiler | Turkey | |--------------------------------|---------------|---------------|-----------|--------------|-----------|----------|--------|---------|--------| | | Hellel | 3100 | 0000 | 200 | IVIGI NCL | DIECUIII | 0000 | 200 | 200 | | Alabama | 0.0204 | 0.0204 | 0.1029 | 0.0191 | 0.4962 | 0.4980 | 0.3239 | 0.0150 | 0.0150 | | Alaska | 0.0169 | 0.0169 | 0.1601 | 0.0165 | 0.0150 | 0.0150 | 0.1282 | 0.0150 | 0.0150 | | Arizona | 0.0169 | 0.0172 | 0.5989 | 0.0165 | 0.5225 | 0.5225 | 0.4695 | 0.0150 | 0.0150 | | Arkansas | 0.0200 | 0.0199 | 0.0754
 0.0188 | 0.5482 | 0.5515 | 0.0150 | 0.0150 | 0.0150 | | California | 0.0192 | 0.0195 | 0.4993 | 0.0182 | 0.4862 | 0.4835 | 0.1034 | 0.0150 | 0.0150 | | Colorado | 0.0159 | 0.0160 | 0.4395 | 0.0157 | 0.2874 | 0.2870 | 0.4055 | 0.0150 | 0.0150 | | Connecticut | 0.0173 | 0.0173 | 0.1017 | 0.0169 | 0.1353 | 0.1340 | 0.0477 | 0.0150 | 0.0150 | | Delaware | 0.0180 | 0.0180 | 0.0932 | 0.0174 | 0.3196 | 0.3196 | 0.0499 | 0.0150 | 0.0150 | | Florida | 0.0219 | 0.0220 | 0.4154 | 0.0203 | 0.2146 | 0.2150 | 0.3299 | 0.0150 | 0.0150 | | Georgia | 0.0201 | 0.0201 | 0.1435 | 0.0189 | 0.4897 | 0.4870 | 0.3168 | 0.0150 | 0.0150 | | Hawaji | 0.0226 | 0.0226 | 0.5516 | 0.0208 | 0.3915 | 0.3915 | 0.2080 | 0.0150 | 0.0150 | | Idaho | 0.0159 | 0.0159 | 0.4408 | 0.0157 | 0.2046 | 0.2038 | 0.3933 | 0.0150 | 0.0150 | | Illinois | 0.0167 | 0.0167 | 0.1194 | 0.0164 | 0.3299 | 0.3300 | 0.0291 | 0.0150 | 0.0150 | | Indiana | 0.0166 | 0.0166 | 0.0981 | 0.0164 | 0.3151 | 0.3154 | 0.0150 | 0.0150 | 0.0150 | | Iowa | 0.0166 | 0.0166 | 0.1003 | 0.0163 | 0.4179 | 0.4188 | 0.0150 | 0.0150 | 0.0150 | | Kansas | 0.0170 | 0.0171 | 0.1247 | 0.0167 | 0.3688 | 0.3680 | 0.0298 | 0.0150 | 0.0150 | | Kentucky | 0.0181 | 0.0181 | 0.0416 | 0.0175 | 0.4471 | 0.4456 | 0.0504 | 0.0150 | 0.0150 | | Louisiana | 0.0213 | 0.0213 | 0.1119 | 0.0198 | 0.2091 | 0.2089 | 0.4636 | 0.0150 | 0.0150 | | Maine | 0.0169 | 0.0169 | 0.0596 | 0.0165 | 0.0150 | 0.0150 | 0.0446 | 0.0150 | 0.0150 | | Maryland | 0.0177 | 0.0177 | 0.0890 | 0.0172 | 0.2891 | 0.2884 | 0.0499 | 0.0150 | 0.0150 | | Massachusetts | 0.0172 | 0.0173 | 0.0725 | 0.0168 | 0.1840 | 0.1836 | 0.0468 | 0.0150 | 0.0150 | | Michigan | 0.0164 | 0.0164 | 0.1537 | 0.0161 | 0.2834 | 0.2825 | 0.0281 | 0.0150 | 0.0150 | | Minnesota | 0.0164 | 0.0164 | 0.0895 | 0.0162 | 0.2995 | 0.2992 | 0.0150 | 0.0150 | 0.0150 | | Mississippi | 0.0206 | 0.0206 | 0.0946 | 0.0193 | 0.5673 | 0.5673 | 0.4607 | 0.0150 | 0.0150 | | Missouri | 0.0169 | 0.0169 | 0.1103 | 0.0166 | 0.3538 | 0.3537 | 0.0150 | 0.0150 | 0.0150 | | Montana | 0.0158 | 0.0158 | 0.2525 | 0.0156 | 0.2528 | 0.2529 | 0.3867 | 0.0150 | 0.0150 | | Nebraska | 0.0167 | 0.0167 | 0.1075 | 0.0164 | 0.3320 | 0.3314 | 0.0292 | 0.0150 | 0.0150 | | Nevada | 0.0159 | 0.0159 | 0.4958 | 0.0157 | 0.0150 | 0.0150 | 0.0150 | 0.0150 | 0.0150 | | New Hampshire | 0.0170 | 0.0170 | 0.0687 | 0.0166 | 0.1150 | 0.1144 | 0.0453 | 0.0150 | 0.0150 | | New Jersey | 0.0176 | 0.0176 | 0.0790 | 0.0171 | 0.1803 | 0.1828 | 0.0486 | 0.0150 | 0.0150 | | New Mexico | 0.0163 | 0.0162 | 0.5236 | 0.0159 | 0.0150 | 0.0150 | 0.4539 | 0.0150 | 0.0150 | | New York | 0.0172 | 0.0172 | 0.0875 | 0.0167 | 0.2010 | 0.2006 | 0.0463 | 0.0150 | 0.0150 | | North Carolina | 0.0182 | 0.0182 | 0.0655 | 0.0176 | 0.5650 | 0.5638 | 0.3123 | 0.0150 | 0.0150 | | North Dakota | 0.0163 | 0.0163 | 0.0655 | 0.0161 | 0.2527 | 0.2534 | 0.0274 | 0.0150 | 0.0150 | | Ohio | 0.0165 | 0.0166 | 0.0994 | 0.0163 | 0.2952 | 0.2952 | 0.0150 | 0.0150 | 0.0150 | | Oklahoma | 0.0166 | 0.0166 | 0.3562 | 0.0162 | 0.5717 | 0.5756 | 0.4610 | 0.0150 | 0.0150 | | Oregon | 0.0178 | 0.0178 | 0.2594 | 0.0171 | 0.1092 | 0.1089 | 0.1652 | 0.0150 | 0.0150 | | Pennsylvania | 0.0174 | 0.0175 | 0.0582 | 0.0169 | 0.3048 | 0.3036 | 0.0150 | 0.0150 | 0.0150 | | Knode Island | 0.01/4 | 0.0174 | 0.03/4 | 0.0169 | 0.1843 | 0.1843 | 0.0481 | 0.0150 | 0.0150 | | South Carolina
South Dakota | 0.0199 | 0.0199 | 0.1031 | 0.0187 | 0.5018 | 0.5001 | 0.4514 | 0.0150 | 0.0150 | | South Danoid | 0.0 | 0.0 | 0.0320 | 20102 | 0.3000 | 0.305.0 | 0.0204 | 0.0 | 0.0100 | 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0511 0.1049 0.0443 0.0490 0.0876 0.0486 0.0279 0.0279 0.4260 0.5315 0.3263 0.0150 0.4822 0.2052 0.2042 0.2690 0.4274 0.5318 0.3282 0.0150 0.4817 0.2077 0.2048 0.2693 0.0177 0.0163 0.0158 0.0166 0.0172 0.0171 0.0171 0.0559 0.5109 0.3772 0.0785 0.0523 0.0684 0.0976 0.2326 0.0183 0.0167 0.0170 0.0178 0.0178 0.0176 0.0176 0.0168 0.0168 0.0160 0.0170 0.0178 0.0178 0.0163 Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Table L-6: CH4 Emissions from Livestock Manure Management (Gg) | Animal Type | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | |---------------------|------|----------|------------|----------|------|--------------|--------------|----------|------|------|------| | Dairy Cattle | 457 | 491 | 483 | 505 | 545 | 571 | 577 | 604 | 624 | 634 | 653 | | Dairy Cows | 447 | 480 | 472 | 495 | 535 | 561 | 292 | 594 | 614 | 624 | 643 | | Dairy Heifer | 1 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | Swine | 621 | 675 | 299 | 089 | 741 | 763 | 729 | 782 | 864 | 839 | 814 | | Market Swine | 482 | 524 | 522 | 534 | 584 | 809 | 582 | 979 | 90/ | 683 | 999 | | Market <60 lbs. | 101 | 110 | 108 | 109 | 119 | 121 | 116 | 125 | 138 | 131 | 128 | | Market 60-119 lbs. | 101 | 111 | 109 | 110 | 119 | 124 | 117 | 127 | 141 | 136 | 132 | | Market 120-179 lbs. | 136 | 147 | 146 | 151 | 164 | 170 | 164 | 175 | 197 | 191 | 185 | | Market >180 lbs. | 144 | 156 | 159 | 165 | 182 | 193 | 185 | 198 | 230 | 225 | 220 | | Breeding Swine | 139 | 152 | 146 | 146 | 156 | 155 | 148 | 156 | 158 | 156 | 149 | | Beef Cattle | 151 | 155 | 155 | 159 | 163 | 166 | 165 | 163 | 161 | 160 | 161 | | Feedlot Steers | 22 | 24 | 23 | 24 | 24 | 24 | 22 | 23 | 24 | 24 | 25 | | Feedlot Heifers | 1 | 12 | 11 | 12 | 12 | 12 | 12 | 13 | 14 | 14 | 14 | | NOF Bulls | 9 | 9 | 9 | 9 | 9 | 7 | 7 | 9 | 9 | 9 | 9 | | NOF Calves | 15 | 15 | 15 | 15 | 15 | 16 | 16 | 15 | 15 | 15 | 15 | | NOF Heifers | 14 | 14 | 15 | 15 | 16 | 17 | 17 | 16 | 16 | 15 | 15 | | NOF Steers | 6 | 6 | 10 | 6 | 10 | 10 | 1 | 10 | 10 | 6 | 6 | | NOF Cows | 74 | 74 | 75 | 77 | 79 | 80 | 80 | 78 | 77 | 77 | 11 | | Sheep | 3 | က | 3 | က | က | 2 | 2 | 2 | 2 | 2 | 2 | | Goats | _ | - | _ | - | _ | - | - | - | _ | _ | _ | | Poultry | 128 | 129 | 125 | 129 | 129 | 124 | 125 | 127 | 130 | 124 | 124 | | Hens >1 yr. | 33 | 31 | 33 | 34 | 34 | 33 | 32 | 31 | 33 | 30 | 30 | | Total Pullets | 63 | 92 | 26 | 09 | 09 | 28 | 26 | 28 | 09 | 26 | 26 | | Chickens | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 3 | 3 | | Broilers | 19 | 20 | 21 | 21 | 22 | 21 | 24 | 25 | 25 | 26 | 76 | | Turkeys | 10 | 10 | 10 | 10 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | | Horses | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 30 | 30 | | | | | | | | | | | | | | Table L-7: N20 Emissions from Livestock Manure Management (Gg) | Animal Type | 1000 | 1001 | 1000 | 1000 | 1007 | 1005 | 1007 | 1007 | 1000 | 1000 | 0000 | |---|-------|------|------|------|------|------|------|------|------|------|------| | Allillial Lype | 1770 | 1771 | 744 | 1773 | 1774 | 1773 | 1770 | 1441 | 1770 | 1777 | 7000 | | Dairy Cattle | 13.6 | 13.3 | 13.2 | 13.1 | 12.9 | 12.9 | 12.6 | 12.4 | 12.3 | 12.3 | 12.3 | | Dairy Cows | 9.2 | 9.0 | 8.7 | 9.8 | 8.4 | 8.3 | 8.2 | 8.0 | 7.8 | 7.7 | 7.7 | | Dairy Heifer | 4.4 | 4.4 | 4.4 | 4.5 | 4.6 | 4.6 | 4.5 | 4.5 | 4.5 | 4.6 | 4.6 | | Swine | 1.0 | 1.0 | 1.1 | 7: | 1: | 1.1 | 1.1 | 1:1 | 1.2 | 1.2 | 7: | | Market Swine | 0.7 | 0.7 | 0.8 | 0.8 | 0.8 | 8.0 | 8.0 | 8.0 | 6:0 | 6.0 | 6.0 | | Market <60 lbs. | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Market 60-119 lbs. | + | + | + | + | + | + | + | + | + | + | + | | Market 120-179 lbs. | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Market >180 lbs. | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | | Breeding Swine | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Beef Cattle | 15.8 | 17.3 | 16.2 | 17.3 | 17.0 | 17.1 | 16.5 | 17.4 | 17.8 | 17.9 | 19.0 | | Feedlot Steers | 10.6 | 11.5 | 11.0 | 11.5 | 11.3 | 11.2 | 10.7 | 11.1 | 11.3 | 11.3 | 12.0 | | Feedlot Heifers | 5.2 | 5.8 | 5.2 | 5.7 | 5.7 | 5.9 | 5.8 | 6.4 | 6.4 | 9.9 | 7.0 | | Sheep | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Goats | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | Poultry | 20.5 | 20.9 | 21.3 | 21.6 | 22.1 | 20.9 | 23.2 | 23.3 | 23.2 | 23.2 | 23.3 | | Hens >1 yr. | 7.0 | 0.7 | 0.7 | 0.7 | 0.7 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | | Pullets | 1.0 | 1.0 | 1.0 | 6.0 | 6:0 | 0.8 | 8.0 | 8.0 | 0.8 | 8.0 | 0.8 | | Chickens | + | + | + | + | + | + | + | + | + | + | + | | Broilers | 12.0 | 12.5 | 13.1 | 13.7 | 14.3 | 13.3 | 15.5 | 15.9 | 16.2 | 16.7 | 16.9 | | Turkeys | 6.7 | 9.9 | 6.5 | 6.3 | 6.1 | 6.1 | 6.2 | 0.9 | 5.6 | 5.1 | 2.0 | | Horses | 9:0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 0.7 | 0.7 | 0.7 | | + Emission actimate is loss than 0.1 Ga | 11 Ca | | | | | | | | | | | + Emission estimate is less than 0.1 Gg